METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA.

JENNIFER OROZCO PÁEZ

UNIVERSIDAD DE CARTAGENA
FACULTAD DE MEDICINA
AREA DE BIOQUÍMICA
MAESTRIA EN BIOQUÍMICA
CARTAGENA, COLOMBIA 2014
METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA.

JENNIFER OROZCO PÁEZ

TUTOR PRINCIPAL
DARIO MANUEL MENDEZ CUADRO. Ph.D

COTUTOR
ANTONIO JOSÉ DÍAZ CABALLERO. Ph.D

UNIVERSIDAD DE CARTAGENA
FACULTAD DE MEDICINA
AREA DE BIOQUIMICA
MAESTRIA EN BIOQUIMICA,
CARTAGENA, COLOMBIA 2014.
Nota de aceptación

Nombre y firma del Presidente del jurado

Nombre y firma del Jurado

Nombre y firma del Jurado

Nombre y firma del Jefe de la Unidad Académica
Cartagena, 18 de noviembre de 2014.

RITA MAGOLA SIERRA MERLANO
Jefe Departamento de Postgrado y Educación Continua
Facultad de Medicina
Universidad de Cartagena
L. C.

Cordial saludo.

La presente tiene como fin el dar a conocer la nota cuantitativa del informe final del proyecto de investigación: METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NÍQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA. Realizado por el estudiante de postgrado: Jennifer Orozco Páez, del programa de MAESTRIA EN BIOQUIMICA.

Calificación obtenida: 4.83

Atentamente,

[Signature]

DARIO MENDEZ CUADRO Ph.D
Docente
Facultad de ciencias exactas
Universidad de Cartagena.

__

Nombre y firma del jefe de la unidad académica.
Cartagena, 18 de noviembre de 2014.

ZENEN CARMONA MEZA
Jefe Departamento de Investigaciones
Facultad de Medicina
Universidad de Cartagena
L. C.

Cordial saludo.

Por medio de la presente, autorizo que nuestro trabajo de investigación titulado: METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA. Realizado por JENNIFER OROZCO PÁEZ, bajo la tutoría de los Dres. DARÍO MENDEZ CUADRO y ANTONIO DÍAZ CABALLERO, sea digitalizado y colocado en la web en formato PDF, para la consulta de toda la comunidad científica. Lo anterior es exigencia de la rectoría de la Universidad de Cartagena según circular 021 de la vicerrectoría académica de la Universidad de Cartagena del 28 de agosto del 2012:

Atentamente,

[Signature]

JENNIFER OROZCO PÁEZ
MAESTRÍA EN BIOQUÍMICA
C.C. 1.143.338.755

[Signature]

DARIO MENDEZ CUADRO Ph.D
Docente
Facultad de ciencias exactas
Universidad de Cartagena.

[Signature]

ANTONIO DÍAZ CABALLERO Ph.D
Docente
Facultad de Odontología
Universidad de Cartagena.
Cartagena, 18 de noviembre de 2014.

ZENEN CARMONA MEZA
Jefe Departamento de Investigaciones
Facultad de Medicina
Universidad de Cartagena
L. C.

Cordial saludo.

A través de la presente cedemos los derechos de propiedad intelectual del trabajo de investigación de nuestra autoría titulado: METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA realizado por JENNIFER OROZCO PÁEZ, bajo la tutoría de los Dres. DARÍO MENDEZ CUADRO y ANTONIO DÍAZ CABALLERO a la Universidad de Cartagena para la consulta y préstamos a la biblioteca únicamente con fines académicos y/o investigativos descartándose cualquier fin comercial, permitiendo de esta manera su acceso al público. Esto exonera a la Universidad por cualquier reclamo de tercero que invoque autoría de la obra. Lo anterior es exigencia de la rectoría de la Universidad de Cartagena circular 021 de la vicerrectoría académica de la Universidad de Cartagena del 28 de agosto del 2012:

Hago énfasis de que conservamos el derecho como autores de registrar nuestra investigación como obra inédita y la facultad de poder publicarlo en cualquier otro medio.

Atentamente,

[Signature]
JENNIFER OROZCO PÁEZ
MAESTRÍA EN BIOQUÍMICA
C.C. 1.143.338.755

[Signature]
DARÍO MENDEZ CUADRO Ph.D
Docente
Facultad de ciencias exactas
Universidad de Cartagena.

[Signature]
ANTONIO DÍAZ CABALLERO Ph.D
Docente
Facultad de Odontología
Universidad de Cartagena.
Cartagena, 18 de noviembre de 2014.

ZENEN CARMONA MEZA
Jefe Departamento de Investigaciones
Facultad de Medicina Universidad de Cartagena
L. C.

Cordial saludo,
Con el fin de optar por el título de: MAGISTER EN BIOQUIMICA, he presentado a la Universidad de Cartagena el trabajo de grado titulado: METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA.

Por medio de este escrito autorizo en forma gratuita y por tiempo indefinido a la Universidad de Cartagena para situar en la biblioteca un ejemplar del trabajo de grado, con el fin de que sea consultado por el público.

Igualmente autorizo en forma gratuita y por tiempo indefinido a publicar en forma electrónica o divulgar por medio electrónico el texto del trabajo en formato PDF con el fin de que pueda ser consultado por el público.

Toda persona que consulte ya sea en la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuente, es decir el título y el autor del trabajo. Esta autorización no implica renuncia a la facultad que tengo de publicar total o parcialmente la obra. La Universidad no será responsable de ninguna reclamación que pudiera surgir de terceros que reclamen autoría del trabajo que presente. Lo anterior es exigencia de la rectoría de la Universidad de Cartagena según circular 021 de la vicerrectoría académica de la Universidad de Cartagena del 28 de agosto del 2012:

Atentamente,

[Signature]

JENNIFER OROZCO PÁEZ
MAESTRIA EN BIOQUIMICA
C.C.1.143.338.755.

[Signature]

DARIO MENDEZ CUADRO Ph.D
Docente
Facultad de ciencias exactas
Universidad de Cartagena.

[Signature]

ANTONIO DIAZ CABALLERO Ph.D
Docente
Facultad de Odontología
Universidad de Cartagena.
Señores

REVISTA CIENCIAS BIOMEDICAS
Departamento de Investigaciones
Facultad de Medicina
Universidad de Cartagena

Estimados señores:

Es mi deseo que el informe final del trabajo de grado: METALOPROTEINASAS DE LA MATRIZ, ESTRÉS OXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA.

, que realizado en conjunto con mis tutores y del cual los abajo firmantes somos autores:

☐ SI, sea considerado, evaluado editorialmente y revisado por pares y publicado en la REVISTA CIENCIAS BIOMEDICAS, órgano de información científica de la facultad de medicina de la universidad de Cartagena.

☒ NO, sea considerado, evaluado editorialmente y revisado por pares y publicado en la REVISTA CIENCIAS BIOMEDICAS, órgano de información científica de la facultad de medicina de la universidad de Cartagena.

Atentamente,

JENNIFER OROZCO PAEZ
MAESTRIA EN BIOQUIMICA
C.C. 1.143.338.755.

DARIO MENDEZ CUADRO Ph.D
Docente
Facultad de ciencias exactas
Universidad de Cartagena.

ANTONIO DÍAZ CABALLERO Ph.D
Docente
Facultad de Odontología
Universidad de Cartagena.
AGRADECIMIENTOS

- A Dios quien me regaló está maestría como una promesa, renovó mis fuerzas cada día y me dio el entendimiento y sabiduría necesarios para seguir siempre adelante.

- A mis padres Nancy Páez Villamizar y Manuel Orozco Mendoza quienes con su inagotable amor me apoyaron incondicionalmente durante todo el proceso.

- Al resto de mis familiares, por su constante apoyo y sus palabras que me alentaron a seguir.

- A mi tutor Darío Méndez Cuadro y su esposa Erika Rodríguez Cavallo, por confiar en mí, abrir las puertas de su laboratorio y permitir la realización de esta meta. Por su ayuda constante, el tiempo dedicado y las muchas enseñanzas que aportaron a mi vida.

- Al Dr. Antonio Díaz Caballero y el Grupo Gitouc por la acogida en el grupo de investigación y su colaboración durante el proceso.

- A mis docentes durante la maestría: Dres. Carlos Moneriz, Edinson Ojeda, Amileth Suarez y Dr. Ciro Alvear por acompañarme en mi formación como Magister.

- A mis compañeros de Maestría: Yamiris, Meisser, Margarita, Diana, Angélica, Johana y Marlon por su colaboración incondicional y por los momentos compartidos.

- A mis compañeros de laboratorio: Neider, Andrés, Jorge, René quienes me acogieron con cariño y colaboraron en todo lo necesario.

- A la facultad de odontología que brindó sus espacios de práctica para realizar la toma de muestras.

- Al grupo de grupo de Química Ambiental y Computacional de la universidad de Cartagena, especialmente a Sofía Pareja, por su valiosa colaboración.
CONFLICTO DE INTERESES:
Los autores no declaran conflicto de intereses

FINANCIACIÓN:
- Vicerrectoría de investigaciones de la Universidad de Cartagena
- COLCIENCIAS.
METALÓPROTEINASAS DE LA MATRIZ, ESTRÉS ÓXIDATIVO Y NIVELES DE NIQUEL EN TEJIDO GINGIVAL AGRANDADO POR TRATAMIENTO DE ORTODONCIA.

MATRIX METALLOPROTEINASES, OXIDATIVE STRESS AND NICKEL LEVELS IN GINGIVAL TISSUE ENLARGED BY ORTHODONTIC TREATMENT.

JENNIFER OROZCO PAEZ
DARIO MENDEZ CUADRO
ANTONIO DIAZ CABALLERO

MAESTRIA EN BIOQUÍMICA
UNIVERSIDAD DE CARTAGENA

1 Odontóloga, candidata a magister en Bioquímica, facultad de medicina, universidad de Cartagena.

RESUMEN

Introducción: El agrandamiento gingival asociado a ortodoncia representa un aumento de volumen en la encía como respuesta al uso de aparatos fijos adaptados durante el tratamiento. Algunos factores que se relacionan con esta patología son el estrés mecánico ejercido por los aparatos fijos ortodonticos y la liberación continua de dosis bajas de metales como el níquel hacia el epitelio gingival. Estos metales podrían actuar como factores iniciadores de hiperplasia gingival mediante la generación de especies reactivas de oxígeno que causan daño oxidativo y activación de enzimas metaloproteínasas. **Objetivo:** Determinar los niveles de expresión de MMP8, MMP9, níquel y perfil de estrés oxidativo en muestras de encía de pacientes con agrandamiento gingival asociado a tratamiento de ortodoncia. **Métodos:** Con el fin de identificar las posibles rutas metabólicas implicadas en el agrandamiento, se emplearon métodos proteómicos basados en metodología western y espectrometría de masas para comparar niveles de expresión de las metaloproteínasas 8 y 9 y la identificación de proteínas carboniladas en el tejido gingival de tres grupos de donantes voluntarios. De igual manera, mediante espectroscopía de absorción atómica se realizó la cuantificación de Ni$^{2+}$ en los grupos. **Resultados:** Los resultados obtenidos muestran que hay un incremento de las lesiones oxidativas en el agrandamiento gingival, que se manifiestan mediante la carbonilación de diferentes proteínas, dentro de ellas proteínas involucradas en el remodelado del tejido gingival. La carbonilación de proteínas va acompañada de sobreexpresión de metaloproteínasas 8 y 9, estos hallazgos guardan relación con la acumulación de níquel en encía que resultó ser significativamente mayor en pacientes con tratamiento ortodóntico. **Conclusiones:** La cercanía de los aparatos con el epitelio gingival, el tiempo de tratamiento y las condiciones del medio oral favorecen la liberación de iones metálicos desde los aparatos hacia los tejidos locales y la generación de estrés mecánico a nivel periodontal. El impacto de estos factores se ve expresado en el daño oxidativo a las proteínas y la expresión de enzimas remodeladoras como MMP 8 y MMP9 en patologías locales como el agrandamiento gingival asociado a ortodoncia.

Palabras claves: Agrandamiento gingival, ortodoncia, metaloproteínasas de la matriz, Estrés oxidativo (DeCS).
SUMMARY.

Introduction: The gingival enlargement associated with orthodontic treatment represents a volume increase in the gingiva in response to the use fixed appliances adapted during the orthodontic therapy. Some factors associated with this condition are the mechanical stress by fixed orthodontic appliances and continuous release of low doses of metals such as nickel into the gingival epithelium. These metals could act as initiators gingival hyperplasia factors by generating reactive oxygen species that cause oxidative damage and activation of metalloproteinase enzymes.

Objective: To determine the expression levels of MMP8, MMP9, nickel and oxidative stress profile in gingival samples of patients with gingival overgrowth associated with orthodontic treatment. Methods: In order to identify the possible metabolic pathways involved in enlargement, proteomic western methodology based methods and mass spectrometry was used to compare expression levels of metalloproteinase 8 and 9 and protein identification carbonylated in the gingival tissue three groups of volunteer donors. Similarly, by atomic absorption spectroscopy to quantify Ni2+ in the groups were perform. Results: The results show that there is an increase in oxidative damage to gingival enlargement, manifested by the carbonylation of different proteins, including proteins involved in the remodeling of gingival tissue. Protein carbonylation accompanied by overexpression of metalloproteinases 8 and 9, these findings relate to nickel accumulation gum was significantly higher in patients with orthodontic treatment.

Conclusions: The proximity of the appliances with the gingival epithelium, the treatment time and the conditions of the oral environment favors the release of metal ions from the devices to local tissues and the generation of mechanical stress in periodontal level. The impact of these factors is express in oxidative damage to proteins and the expression of enzymes such as MMP-8 and MMP-9 and local conditions such as associated gingival enlargement orthodontics.

KEY WORDS: Gingival Overgrowth, Orthodontics, Matrix Metalloproteinases, Oxidative Stress (MeSH).
INTRODUCCION

El desarrollo de agrandamiento gingival es uno de los problemas más comunes asociados con el tratamiento de ortodoncia, se considera como una reacción inflamatoria que genera un aumento de volumen en la encía. Se ha relacionado con distintos factores locales como la incorrecta colocación de los aparatos, la corrosión metálica y el acúmulo de biopelícula, sin embargo no se ha establecido de manera clara el mecanismo por el cual se desarrolla la patología durante el tratamiento ortodóntico. Esta situación ha conducido a la identificación de factores locales externos e internos que intentan explicar la naturaleza del agrandamiento gingival en pacientes con aparatos de ortodoncia (1,2).

Estudios previos correlacionaron el estrés mecánico producido por los aparatos fijos con un cambio en la expresión del colágeno, específicamente a través del aumento de metaloproteininasas de matriz extracelular, como la MMP8 y MMP9 (3). Sin embargo la liberación de dosis bajas y continuas de níquel principalmente, y otros metales desde los aparatos fijos ortodónticos hacia el epitelio gingival han despertado interés por su posible papel como factores iniciadores de la hiperplasia gingival mediante la generación de especies reactivas de oxígeno (ROS) que causan daño oxidativo o la activación de rutas metabólicas que confluyen en la sobre expresión de las MMPs (Metaloproteininasas de la matriz) (4).

Se puede considerar entonces que los aparatos fijos utilizados durante el tratamiento son capaces de desencadenar una respuesta local de los tejidos blandos y en el periodonto en nivel molecular con consecuencias histológicas, indicando que el desarrollo de agrandamiento gingival está asociado a factores locales externos como el níquel presente en los aparatos de ortodoncia que desencadenan una respuesta metabólica donde participan moléculas involucradas en la remodelación del colágeno (5,6).

De allí que el interés del presente estudio se centra en la evaluación del níquel como desencadenante de estrés oxidativo y en la determinación de la expresión de MMP8 y MMP9 en agrandamiento gingival asociado a tratamiento de ortodoncia.
MATERIALES Y MÉTODOS

La población estudiada fueron pacientes programados para cirugía gingival estética en la clínica de la facultad de odontología de la universidad de Cartagena. A partir de esta población se conformaron 3 grupos de pacientes así: Grupo 1, formado por pacientes diagnosticados con agrandamiento gingival asociado a ortodoncia; Grupo 2, pacientes sin evidencias clínicas de agrandamiento gingival pero con antecedentes de uso de aparatos ortodónticos; Grupo 3, pacientes sin evidencias clínicas de agrandamiento gingival y sin antecedentes de uso de aparatos ortodónticos. Las muestras de tejido gingival se obtuvieron por gingivectomía convencional, se lavaron con solución salina isotónica, y se almacenaron en tubos eppendorf a -80°C hasta su posterior procesamiento. Se obtuvieron muestras para la determinación de níquel y para la determinación de MMPs y carbonilación de proteínas por inmuno-ensayos.

Preparación de muestras: Para la obtención de proteínas se maceraron las muestras de tejido gingival en frío con tampón PBS-Tritón X-100 (1%). Los extractos homogenizados se centrífugaron a 12.000 rpm a 4°C durante 15 minutos. El sobrenadante se recuperó y la concentración de proteína total extraída se determinó por el método de Bradford, utilizando curva de calibración con BSA. La mitad de los extractos se reservó para el análisis de expresión de MMPs 8 y 9, mientras que la otra mitad fue derivatizada con dinitrofenilhidrazina (DNPH) para el estudio de carbonilación proteica.

Derivatización de proteínas: Grupos carbonilos de las cadenas laterales de los aminoácidos fueron etiquetados con DNPH, de acuerdo con protocolos previamente descritos (7).En forma breve, las proteínas presentes en las muestras se desnaturalizaron con SDS, posteriormente se incubaron con solución fresca de DNPH y, por último se detuvo la reacción al agregar una solución stop a base de mercaptoetanol tris-glicerol.
Inmunoensayos.

Proteínas cuantificadas y derivatizadas fueron separadas en un equipo Mini-Protean 4 (Bio-Rad) mediante SDS-PAGE en un gel al 12%. Luego se transferieron a una membrana de PVDF (polivinilidendifluoruro) por electro transferencia en cámara semiseca y se incubaron con anticuerpos anti-DNP (1:5000 en PBS – Leche 5%. Sigma).

Para la detección de las metaloproteinerasas, proteínas fueron sembradas en membranas de PVDF, bloqueadas con PBS-Leche 5% e incubadas con anticuerpos primarios monoclonales para MMP8 (Anti-Human-MMP-8, clone 115-13D2. Millipore) y MMP9 (Anti-MMP-9, near C-terminus, clone 56-2A4 MAB3309, Millipore). Todas las membranas fueron incubadas con anticuerpo secundario (Rabbit anti-Mouse IgG, HRP conjugate, CHEMICON) y la intensidad de las bandas y spots se visualizaron por medición de la quimioluminiscencia en un transiluminador ChemiDoc (Bio-Rad). Los niveles de expresión de MMP8, MMP9 y perfil de oxidación de proteínas se determinó por análisis de densitometría óptica con ayuda del software Quantity One (Bio-Rad).

Determinación de niveles de níquel en muestras de tejido gingival: Los niveles de níquel en las muestras de tejido biológico se determinaron por espectroscopía de absorción atómica (AAS) (8). Para su análisis las muestras de tejido se pesaron y se sometieron a digestión ácida con HNO₃ + H₂O₂. Se cuantificaron los niveles de níquel en cada muestra de tejido empleando una curva de calibración de níquel de 0 a 20 ug/L.

Espectrometría de masas en tándem: Bandas representativas de los pacientes de los grupos 1 y 2 fueron escindidas del gel y sometidas a digestión con tripsina (9). Los péptidos fueron analizados en un equipo MALDI-TOF TOF (Bruker) y la identificación se realizó mediante la herramienta sequence Tag de Mascot (10).

Análisis Estadístico: Los datos del estudio se tabularon en una tabla matriz en Microsoft Excel versión 2010, luego se exportaron al software estadístico stata versión 12. Inicialmente se analizaron los datos a partir de pruebas descriptivas (frecuencias
absolutas y relativas, medidas de tendencia central y de dispersión). A los datos cuantitativos se les realizó la prueba de normalidad Shapiro Will. Según este test los datos que resultaron ser paramétricos se analizaron por ANOVA utilizando la corrección de Bonferroni. Cuando la distribución de los datos fue no paramétrica se aplicó la prueba Kruskal Wallis y para establecer diferencias entre dos grupos se aplicó la prueba U de Man Witney. Para todos los datos se tuvo en cuenta un límite de significancia inferior a 0,05.
RESULTADOS

Los resultados obtenidos se resumen de la siguiente manera:

1. Distribución de datos

Se obtuvieron muestras de tejido gingival de 28 pacientes que en su mayoría fueron mujeres y se situaron en un rango de edad entre 21 a 25 años. Los grupos de estudio 1, 2 y 3 fueron conformados como se observa en la tabla 1.

2. Determinación de Ni²⁺ en tejido gingival

La concentración de níquel para las muestras de tejido gingival de cada grupo de estudio se expresó en términos de µg de Ni/ g de tejido gingival (tabla 2).

El análisis de los datos demuestra la presencia de níquel en el tejido gingival con diferencias significativas entre las concentraciones del metal para los tres grupos estudiados (p=0,018), mostrando que los pacientes con aparatos ortodónticos tienden a presentar mayor acumulación de Ni en sus tejidos (p=0,007) (Grafica 1).

3. Determinación del daño oxidativo a proteínas en muestras de tejido gingival.

Los inmunoensayos de proteínas carboniladas muestran que cualitativamente existe similitud entre los perfiles de oxidación de bandas de los grupos 1 y 2, mientras que en el grupo de estudio 3 se observó un número menor de bandas oxidadas. Teniendo en cuenta el análisis cualitativo se realizó el análisis cuantitativo de tres bandas oxidadas, Banda 1: (Rf: 0,23); Banda 2: (Rf: 0,28); y Banda 3: (Rf: 0,35) (figura 1).

Al evaluar cuantitativamente las bandas oxidadas entre los grupos de pacientes, se observaron diferencias significativas entre los grupos de estudio para la banda 2 Rf: 0,28 (p=0,013) y para la banda 3 Rf: 0,35 (p=0,000) (Grafica 2).
4. Identificación de proteínas por espectrometría de masas en Tándem.
Mediante el análisis por espectrometría de masas de las bandas de interés oxidadas se identificaron mezclas de péptidos de las siguientes proteínas: Teneurín-4, SH3 domain binding proteín 4, Unconventional myosin-IXb (Figura 2 y Tabla 3).

5. Determinación de niveles de expresión de MMP8 y MMP9.
Para determinar el nivel de expresión de las MMPs primero se estandarizó un método de cuantificación por dot blot a partir de los extractos proteicos totales. Para ello se determinó un intervalo de concentraciones de extracto de proteínas (figura 3) y su comportamiento lineal, reproducibilidad y repetitividad para los tres grupos de estudio. El análisis cuantitativo de los datos obtenidos demostró que existe mayor expresión de MMP8 y MMP9 en tejido gingival agrandado por ortodoncia (Tablas 4 y 5; figuras 4 y 5).
DISCUSIÓN

Dependiendo de la extensión y gravedad, el agrandamiento gingival puede conducir a trastornos funcionales como el habla alterada, dificultad en la masticación y problemas estéticos y psicológicos. A pesar de la eliminación de los aparatos fijos no siempre se alcanza la resolución completa del agrandamiento gingival, por esta razón en la mayoría de las ocasiones la única opción es la intervención quirúrgica y los riesgos que ella implica (11).

En aras de explicar el desarrollo de esta patología, se planteó un estudio para evaluar el efecto de la liberación de níquel en tejido gingival de pacientes con aparatos ortodónticos. Partiendo del hecho de que el arco de alambre de níquel-titania estándar es el que se usa con mayor frecuencia en ortodoncia y se compone de 50% a 60% de níquel, este alto contenido le confiere un potencial suficiente para la liberación del mismo en el medio bucal. Sumado a esto, las condiciones iónicas, térmicas, microbiológicas y enzimáticas de la cavidad bucal facilitan la biodegradación de los metales, por lo tanto la fuga de los iones de níquel desde la aparatoología ortodóntica, implica necesariamente cierto nivel de exposición por parte del paciente, a partir de la corrosión y el envejecimiento de las aleaciones utilizadas (12).

Estas consideraciones nos llevan a confirmar los resultados obtenidos en el presente estudio, que muestra una tendencia a mayor acumulación de níquel en la encía de pacientes con aparatos. La participación de este metal en el desarrollo del agrandamiento gingival se ve reflejada en los hallazgos de Gursoy y cols, quienes establecieron mediante análisis histopatológico que las muestras de pacientes con agrandamiento muestran un aumento significativo en la proliferación de las células epiteliales en respuesta a dosis bajas de níquel (8). El mecanismo mediante el cual este metal afecta los tejidos no está muy lejos de ser explicado, existen reportes que indican que el níquel como metal de transición genera especies reactivas de oxígeno que actúan sobre macromoléculas como las proteínas. Más aún, Spalj, S y cols, mediante un estudio in vitro demostraron que los arcos de níquel-titania estándar (se usan con mayor frecuencia) generan mayor estrés oxidativo que otros materiales, mediante la liberación de ROS que pueden inducir la liberación de citoquinas
proinflamatorias (IL1 y IL6) y la expresión de enzimas remodeladoras como la MMP-8 y MMP-9; es decir que pueden actuar como desencadenantes de la hiperplasia gingival (13).

Atendiendo a la capacidad del níquel como generador de ROS, se decidió evaluar el perfil de carbonilación de proteínas, el análisis de los resultados mostró diferencias cualitativas y cuantitativas entre los grupos estudiados. Mostrando mayores cantidades de níquel y un perfil redox más intenso para los grupos 1 y 2 quienes están y estuvieron expuestos a tratamiento ortodóntico. Este resultado confirma la relación entre el aumento de níquel y la carbonilación de proteínas (14).

Por su parte, la sobre-expresión de metaloproteínasas 8 y 9 se determinó mediante dot-blot. La implementación de una metodología por dot-blot resultó ventajosa frente a la metodología western por ser más rápida, sensible, reproducible y menos costosa. De esta forma se determinó que MMP8 y MMP9 se sobreexpresan más en el tejido agradando, este comportamiento es respaldado por los hallazgos de Petra Surlin y cols, quienes lo asociaron al estrés mecánico producido por los aparatos ortodónticos que conlleva a la acumulación de MMP8 y MMP9 en el fluido crevicular gingival y en la encía hiperptofiada, indicando una remodelación del colágeno y del ligamento periodontal (3). Por el incremento de su actividad remodeladora, estas enzimas son candidatas a ser marcadores del inicio de la enfermedad gingival durante el tratamiento de ortodoncia (15).

Los procesos de remodelado tisular no son sencillos, en pacientes con aparatos se generan sitios de tensión y presión a nivel periodontal y gingival. La aparición de estos sitios implica para el periodonto establecer un mecanismo de adaptación a ese proceso local que se está dando. Normalmente, los tejidos se adaptan a la tensión mecánica aguda o crónica por la remodelación de sus citoesqueletos actina, para producir cambios en la forma celular, la orientación, y el fenotipo. Proteínas como la Teneurin-4 y Unconventional myosin-IXb que participan en este proceso de adaptación, fueron identificadas al analizar por espectrometría de masas las bandas oxidadas de pacientes con agradamiento gingival (16). También se identificó la proteína SH3 domain binding proteín 4, proteína que regula indirectamente el
crecimiento y la proliferación celular, la presencia de esta proteína y las anteriormente mencionadas vislumbran el mecanismo fisiológico que envuelve el desarrollo de la hiperplasia gingival.
CONCLUSIONES

- Existe liberación de iones de níquel desde los aparatos ortodónticos hacia el epitelio gingival. La concentración de este metal es significativamente mayor en pacientes expuestos a tratamiento de ortodoncia con respecto a pacientes que no han tenido contacto con la aparatoología.

- Existe diferencia cualitativa y cuantitativa en el perfil de carbonilación de proteínas entre individuos que están o han estado en contacto con aparatos ortodónticos frente a los pacientes periodontalmente sanos que no han tenido exposición.

- Las proteínas Teneurín-4, Unconventional myosin-IXb y SH3 domain binding protein 4 identificadas por espectrometría de masas poseen funciones relacionadas con el proceso de remodelado tisular y proliferación celular. Por lo tanto son de interés para aclarar el mecanismo bioquímico y fisiopatológico del agrandamiento gingival por ortodoncia.

- El método de Dot blot estandarizado para la cuantificación de MMPs demostró que existe sobreexpresión de MMP 8 y MMP 9 en agrandamiento gingival asociado a ortodoncia frente a tejido gingival sano.
REFERENCIAS BIBLIOGRÁFICAS

<table>
<thead>
<tr>
<th>Edad (años)</th>
<th>nº</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 a 15</td>
<td>4</td>
<td>14,3</td>
</tr>
<tr>
<td>16 a 20</td>
<td>6</td>
<td>21,4</td>
</tr>
<tr>
<td>21 a 25</td>
<td>12</td>
<td>42,9</td>
</tr>
<tr>
<td>26 a 30</td>
<td>3</td>
<td>10,7</td>
</tr>
<tr>
<td>31 a 35</td>
<td>3</td>
<td>10,7</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sexo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masculino</td>
<td>4</td>
<td>9,5</td>
</tr>
<tr>
<td>Femenino</td>
<td>24</td>
<td>57,1</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupos de Pacientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo 1</td>
</tr>
<tr>
<td>Grupo 2</td>
</tr>
<tr>
<td>Grupo 3</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Tabla 1. Distribución de grupos y variables sociodemográficas.

<table>
<thead>
<tr>
<th>ug Ni/g tejido.</th>
<th>Grupo 1</th>
<th>Grupo 2</th>
<th>Grupo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>nº</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4,9</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>2</td>
<td>3,0</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>3</td>
<td>0,4</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>4</td>
<td>0,7</td>
<td>0,0</td>
<td>0,3</td>
</tr>
<tr>
<td>5</td>
<td>1,3</td>
<td>0,5</td>
<td>0,7</td>
</tr>
<tr>
<td>6</td>
<td>1,5</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,4</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3,6</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Concentración de níquel en tejido gingival para los individuos de cada grupo de estudio. La concentración se expresa en función de microgramos de níquel por gramo de tejido.
Grafica 1. Concentración de níquel. Los gráficos para cada grupo expresan la mediana y I.Q.R (rango intercuartil). Existe diferencia significativa entre los tres grupos ($p < 0.05$).

Figura 1. Perfil de proteínas carboniladas en los grupos de estudio. Tiempo de exposición de cada imagen: 155 Segundos. Banda 1 (Rf 0.23); Banda 2 (Rf 0.28); Banda 3 (Rf: 0.35). Nótese que existe un mayor número de bandas oxidadas en los grupos 1 y 2 frente al grupo 3.
Gráfica 2. Análisis cuantitativo de la banda 2 (Rf: 0,28) y banda 3 (Rf: 0,35). En el eje Y se representa el volumen (intensidad) para la banda oxidada. Nótese que para el análisis de la banda 2 existe diferencia significativa (p= 0,011) entre los grupos 2 y 3. El análisis de la banda 3 reportó diferencia significativa de la intensidad de la señal (p=0,003) entre los tres grupos. Entre grupo 1 y 3(= 0,010) y grupos 2 y 3 (p=0,00).
Figura 2. Histograma de resultados analizados en Mascot. Las puntuaciones de iones individuales > 21 indican identidad o extensa homología (p < 0.05). La puntuación de las proteínas se obtiene a partir de la puntuación de los iones como base para la clasificación no probabilística de los hits de proteínas.
<table>
<thead>
<tr>
<th>Protein</th>
<th>Mass</th>
<th>Score</th>
<th>Matches</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneurin-4 (TEN4_HUMAN)</td>
<td>307761</td>
<td>39</td>
<td>1(1)</td>
<td>K.ARVLELAR.Q</td>
</tr>
<tr>
<td>SH3 domain-binding protein 4 (SH3B4_HUMAN)</td>
<td>107428</td>
<td>26</td>
<td>1(1)</td>
<td>K.HQFVLSRPQDLK.V</td>
</tr>
<tr>
<td>Unconventional myosin-ixb (MYO9B_HUMAN)</td>
<td>243249</td>
<td>26</td>
<td>1(1)</td>
<td>R.VIATKDESTTSVDVIK.D</td>
</tr>
</tbody>
</table>

Tabla 3: Proteinas identificadas por espectrometría de masas.

Figura 3. Expresión de MMP9 en tejido gingival agrandado a diferentes concentraciones de proteína.
<table>
<thead>
<tr>
<th>ug. Proteína</th>
<th>Grupo 3 (controles)</th>
<th>Grupo 1 (casos)</th>
<th>Casos/Controles</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>907.804</td>
<td>4.170.874</td>
<td>4,6</td>
</tr>
<tr>
<td>20</td>
<td>547.985</td>
<td>2.041.465</td>
<td>3,7</td>
</tr>
<tr>
<td>10</td>
<td>366.677</td>
<td>1.102.664</td>
<td>3,0</td>
</tr>
<tr>
<td>5</td>
<td>247.503</td>
<td>587.511</td>
<td>2,4</td>
</tr>
<tr>
<td>2,5</td>
<td>167.346</td>
<td>308.272</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Tabla 4. Medias de expresión de MMP-9 en pacientes con agrandamiento gingival y pacientes periodontalmente sanos. De acuerdo a la cantidad de proteína sembrada, la MMP-9 se sobreexpresa entre 1,8 y 4,6 veces más en agrandamiento gingival.

Figura 4. Correlación lineal entre la concentración de proteína y la respuesta instrumental (expresión de MMP9).
<table>
<thead>
<tr>
<th>ug. Proteína</th>
<th>Grupo 2 (Controles)</th>
<th>Grupo 1 (Caso)</th>
<th>Casos/Controles</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>2.635.525</td>
<td>3.897.621</td>
<td>1,5</td>
</tr>
<tr>
<td>20</td>
<td>1.313.743</td>
<td>2.225.017</td>
<td>1,7</td>
</tr>
<tr>
<td>10</td>
<td>719.405</td>
<td>1.129.187</td>
<td>1,6</td>
</tr>
<tr>
<td>5</td>
<td>410.971</td>
<td>652.696</td>
<td>1,6</td>
</tr>
<tr>
<td>2,5</td>
<td>270.835</td>
<td>427.716</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tabla 5. Medias de expresión de MMP-8 en pacientes con agrandamiento gingival y pacientes periodontalmente sanos. De acuerdo a la cantidad de proteína sembrada, la MMP-8 se sobreexpresa entre 1,6 y 1,7 veces más en el agrandamiento gingival.

Figura 5. Correlación lineal entre la concentración de proteína y la respuesta instrumental (expresión de MMP8).